
Bundesamt für Eich- und Vermessungswesen

Inhaltsverzeichnis

Met	thodik der Berichterstellung	3
Zie	l	3
Zus	ammenfassung	4
1	Übersicht der Bundesgebäude	7
1.1	Geografische Zuordnung	7
1.2	Ressortzuordnung	8
2	Aufteilung der Energiekosten je Bundesland	11
3	Entwicklung der Energiekennzahlen	12
4	Entwicklung der Energieträger (Daten und Interpretation)	13
4.1	Heizwärme	13
	Energie für Heizzwecke	13
9	Besondere Ausprägungen im Zeitraum 1980-2020	14
	Fernwärme	15
	Entwicklung der Energiekennzahl Heizung	17
4.2	Strom	18
5	EMISSIONEN IM BUNDESBEREICH	20
6	Werkzeuge der Energieeffizienzsteigerung	2
6.1	Energieeinsparcontracting	21
6.2	Photovoltaik	21
6.3	Weitere Erneuerbare Energieträger	22
7	Zukünftige Entwicklung – Bedarfsabschätzung etc	25
8	Arbeit und LEISTUNG der Energiebeauftragten des Bundes	27
0	ANHANG	29

Methodik der Berichterstellung

Mit der Tätigkeit der Energieberater des Bundes (im Folgenden EBB) wird die gesetzlich vorgeschriebene Aufgabe betreffend Immobilien des Bundes laut Energieeffizienzgesetz (EEffG) umgesetzt.

Die bundesweite Auswertung und Darstellung der Energiestatistik 2020 basiert auf den einzelnen Ressortmeldungen. Die Daten wurden von den EBB geprüft und mit der Datenbank eGISY erfasst und ausgewertet.

Eingegeben wurden alle Energieverbräuche und Energiekosten, welche im Jahre 2020 von Bundesdienststellen verursacht und deren Daten von diesen gemeldet wurden.

Die zur Umrechnung der äquivalenten Wärmemenge der betreffenden Brennstoffe verwendeten Heizwerte (Hu) wurden aus dem BGBL Jahrgang 2015, ausgegeben am 30. November 2015 Teil II - 394. Verordnung: Energieeffizienz-Richtlinienverordnung.

Für die Berechnung des spezifischen Heizenergieverbrauches bzw. für die bereinigten Änderungen der Energieverbrauchsdaten bezogen auf das Vorjahr (theoretische Änderung des Brennstoffverbrauches 2020 bezogen auf 2019) wurden die Heizgradtagzahlen (HGT 12/20) der jeweiligen Orte verwendet. Diese Heizgradtagzahlen stammen von der Zentralanstalt für Meteorologie und Geodynamik (ZAMG Wien – Hohe Warte).

Die monetären Auswertungen, Tabellen und Grafiken wurden auf Basis der gemeldeten, durchschnittlichen tatsächlichen Kosten erstellt.

Ab 2015 wurde im Einvernehmen mit der Energieeffizienz-Monitoringstelle (AEA) mit den Konversionsfaktoren der OIB Richtlinie 6 (Ausgabe April 2019) gerechnet. Dies führt zu einer Diskontinuität in der Darstellung der CO₂e – Emissionen.

Ziel

Die jährliche Energiestatistik des Bundes wird mit Hilfe des Gebäude-Informationssystems (eGISY) von den EBB erstellt.

Die betreffende Statistik dient als Serviceleistung für den Nutzer durch Erstellung von verschiedenen Energie-Kennzahlen (EKZ- Heizung, EKZ- Strom, spezifische Heiz- und Stromkosten) sowie als Grundlage für die Budgetplanung, die Bewertung von Energieeffizienz-Maßnahmen und die Erstellung von Emissionsbilanzen. Weiters erfolgen mit den Daten aus der Energiestatistik Trendanalysen und Darstellungen über die langjährige Energieverbrauchs- und Kostenentwicklung.

Zusammenfassung

Im Jahre 2020 wurden von den EBB des Bundes folgende Daten (Tabelle 1) erfasst:

Anzahl der Bundesanlagen	2.013	
Erfasster Rauminhalt (Wärme)	53,30	Mio.m ³
Erfasster Rauminhalt (Strom)	50,95	Mio.m ³
Gesamt	1.184	GWh
Heizung	850	GWh
Elektrischer Strom für sonstige Zwecke	334	GWh
Pro Anlage	588,18	MWh
Gesamt	112,1	Mio. Euro
Heizung	65,5	Mio. Euro
Elektrischer Strom für sonstige Zwecke	46,6	Mio. Euro
Pro Anlage	55.688 Eur	ro

Tabelle 1: allg. Daten der Bundesliegenschaften 2020

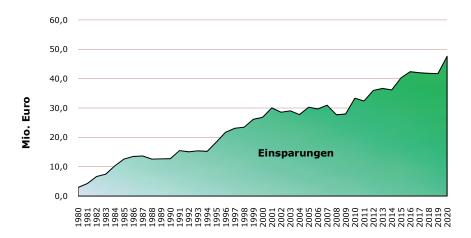
1.003 Mio. EUR bzw. 29.831 GWh eingespart.

Das sind gemittelt jährlich ca. **25 Mio. Euro bzw. 746 GWh** (entspricht ca. 61,5 % des Jahres-Energieverbrauches aller Bundesdienststellen). In den letzten Jahren wurde die Energieverbrauchsbuchhaltung forciert und eine wesentlich engere Zusammenarbeit mit den Ressorts und der Bundesimmobiliengesellschaft mbH (BIG) gesucht. Der damit verbundene Erfolg zeigt, dass die vom Bundesministerium für Digitalisierung und Wirtschaftsstandort (BMDW) eingeschlagene Richtung stimmt.

Das BMDW versucht anhand von Analysen, neuen Strategien und Projekten gemeinsam mit den Energieberatern des Bundes die noch vorhandenen Energiesparpotentiale aufzuspüren. Im Jahre 2004 startete die "Bundescontracting Offensive".

Mit dem Inkrafttreten des Bundes-Energieeffizienzgesetzes EEffG (BGBL 72/2014) wird der Bund bis 2020 zu weiteren Energieeffizienzmaßnahmen verpflichtet (jährliche Sanierungsrate von 3 %).

Auszug aus dem EEffG (BGBL 72/2014): Energieeinsparung des Bundes §16


(1) Der Bund verpflichtet sich im Zeitraum zwischen dem 1. Jänner 2014 und dem 31. Dezember 2020 **Effizienzmaßnahmen** an der gesamten beheizten oder gekühlten Gebäudefläche in Österreich, die sich in seinem Eigentum befindet und von ihm genutzt wird, im Umfang von **48,2 GWh** durchzuführen. Dies entspricht einer jährlichen Sanierungsquote von 3 %.

Das Einsparziel soll insbesondere durch folgende Maßnahmen erreicht werden:

- 1. Energieeinsparcontracting;
- 2. Energiemanagementmaßnahmen;
- 3. Sanierungsmaßnahmen.
- (2) Über die Verpflichtung des Abs. 1 hinaus ist der Bund, vertreten durch das jeweils zuständige Bundesorgan gemäß Anhang II, gemeinsam mit der BIG Bundesimmobiliengesellschaft mbH. verpflichtet, im Zeitraum zwischen dem 1. Jänner 2014 und dem 31. Dezember 2020 Effizienzmaßnahmen an der gesamten beheizten oder gekühlten Gebäudefläche, die sich im Eigentum der BIG Bundesimmobiliengesellschaft mbH. befindet und von einem Bundesorgan gemäß Anhang II genutzt wird, im Umfang von 125 GWh durchzuführen.

Wie der Abbildung 1 zu entnehmen ist, konnte die Einsparungsmenge beinahe jährlich gesteigert werden.

Abbildung 1: kumulierte Energiekosteneinsparungen 1980 – 2020 [Mio. Euro/Jahr] Anmerkung: detaillierte Tabellen befinden sich im Anhang dieses Berichts

1 Übersicht der Bundesgebäude

1.1 Geografische Zuordnung

Als Bundesgebäude werden jene Gebäude bezeichnet, die sich im Eigentum bzw. im Besitz des Bundes befinden oder die von Dritten vermietet bzw. überlassen und vom Bund genutzt werden.

Nachfolgende Abbildung 2 zeigt die anzahlmäßige Verteilung der Gebäude auf die einzelnen Bundesländer.

Niederösterreich hält hier aufgrund der zahlreichen Polizeiinspektionen den höchsten Anteil, gefolgt von der Bundeshauptstadt Wien.

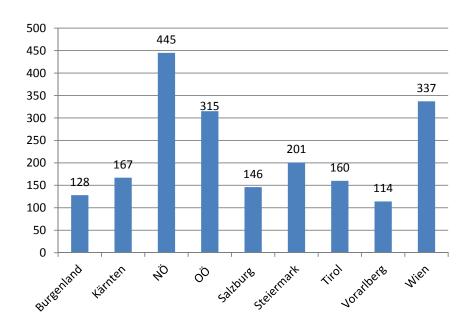


Abbildung 2: Gebäudeanzahl je Bundesland. Anmerkung: die Erklärung verwendeter Abkürzungen befindet sich im Anhang dieses Berichts.

Die nachfolgende Abbildung 3 zeigt den kubaturbezogenen Anteil pro Bundesland.

Durch das Einbeziehen des Gebäudevolumens wird die tatsächliche Verteilung auf die Bundesländer offensichtlich. Aufgrund der Funktion als Regierungssitz steht hier Wien an erster Stelle.

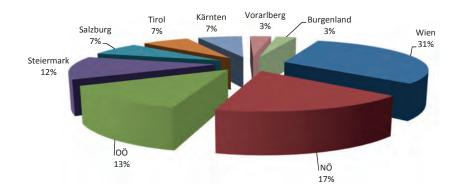


Abbildung 3: Verteilung der Gebäudekubatur auf die Bundesländer [%]

1.2 Ressortzuordnung

Nachfolgende Abbildung 4 gibt einen Überblick über die Verteilung des Gesamtenergieverbrauchs auf die Ressorts. Das BMBWF hält aufgrund der Anzahl der Bundesschulen den größten Anteil, gefolgt von BMLV und dem Bundesministerium für Justiz (BMJ).

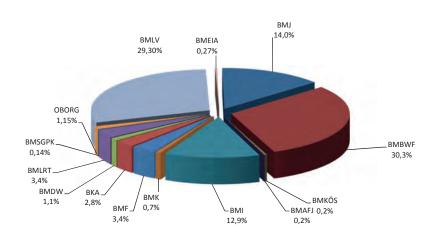


Abbildung 4: Gesamtenergieverbrauch nach Ressorts 2020 [%]

Abbildung 5 zeigt die Verteilung des spez. Energieverbrauchs (Heizenergie und Strom bezogen auf den Brutto-Rauminhalt) aufgeteilt auf die einzelnen Ressorts in Form der Energiekennzahlen [kWh/m³]. Diese Darstellung der Energieverbrauchswerte relativ zum konditionierten Brutto-Rauminhalt ermöglicht die bessere Vergleichbarkeit der unterschiedlichen Gebäudetypen und der jeweiligen Nutzung.

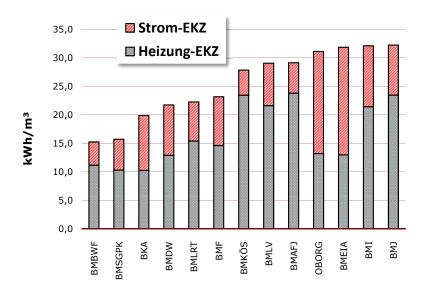


Abbildung 5: Energiekennzahlen der Ressorts [kWh/ m³]

Einflussgrößen auf den Energieverbrauch pro Kubikmeter konditionierten Bruttorauminhalt sind unter anderem:

- Nutzungsform (rund um die Uhr oder nur tagsüber)
- Gebäudestandard
- Sanierbarkeit (vor allem bei historischen bzw. denkmalgeschützten Gebäuden)
- hoher Rechnerleistungsbedarf
- Klimatisierungsbedarf (z.B. aufgrund der Architektur des Gebäudes)
- Technisierungsgrad des Gebäudes

Durch den zentralen Einkauf der Bundesbeschaffung GmbH (BBG) wird allen Ressorts ein einheitlicher Strompreis pro kWh in Rechnung gestellt. Daher wirken sich vor allem Kubatur und der tatsächliche Stromverbrauch auf die Werte in nachfolgender Abbildung 6 aus.

Im Durchschnitt werden ca. EUR 1,23 pro konditioniertem Kubikmeter für die Heizung aufgewendet sowie EUR 0,87 für den elektrischen Strom.

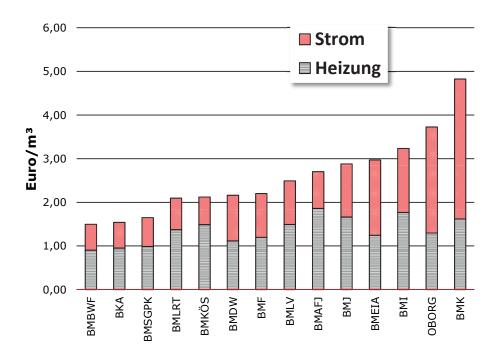


Abbildung 6: Gesamtenergiekosten pro Rauminhalt 2020 [EUR/m³]

2 Aufteilung der Energiekosten je Bundesland

Die nachstehende Grafik in Abbildung 7 zeigt die Verteilung der Energiekosten für elektrischen Strom (Beleuchtung, EDV und sonstige Zwecke) und Raumheizung bezogen auf das jeweilige Bundesland.

Abgesehen von der Bundeshauptstadt Wien entspricht hier die Verteilung in etwa der Größe der Bundesländer bzw. deren Landeshauptstädte. Die Gesamtenergiekosten pro Bundesland sind von der Anzahl der Bundesgebäude im jeweiligen Bundesland, von den Gestehungskosten der Energie für Strom und Heizwärme und vom tatsächlichen Energieverbrauch abhängig.

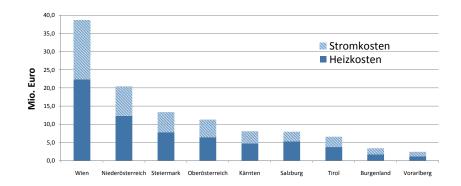


Abbildung 7: Gesamtenergiekosten 2020 je Bundesland

3 Entwicklung der Energiekennzahlen

Die Ermittlung der Verbrauchsänderung zum jeweiligen Vorjahr erfolgt für die Heizenergie unter Berücksichtigung der Heizgradtagzahl und Kubaturänderung für den elektrischen Energieverbrauch nur unter Berücksichtigung der Kubaturänderung (siehe dazu auch nachfolgende Tabelle 2 und 3):

2019 - 2020

Energieverbrauch-Reduktion	- 47,84	GWh
Kosteneinsparung	- 5,90	Mio. Euro
Heizung	5,85	Wh/m³ * HGT
Strom	6,68	kWh/m³
Heizung	5,66	Wh/m³ * HGT
Strom	6,56	kWh/m³
Heizung	- 3,2	%
Strom	- 0,18	%
Kohlendioxyd (CO ₂)	- 3.029,0	Tonnen
Restliche Emissionen (Staub, $SO_{2'}$, $NO_{x'}$, $C_xH_{y'}$, CO)		-11,2Tonnen

Tabelle 2: Energie- Verbrauchsänderung 2019 - 2020

1980 - 2020

Kumulierung		
Kumulierte Energieeinsparung	29.831	GWh
Kumulierte Einsparung / Jahr	728	GWh
Kumulierte Kosteneinsparung	1.003,1	Mio. Euro
Kumulierte Kosteneinsparung / Jahr	24,5	Mio. Euro

Tabelle 3: Kumulierte Energieeinsparung 1980 - 2020

4 Entwicklung der Energieträger (Daten und Interpretation)

4.1 Heizwärme

Energie für Heizzwecke

Auf Grundlage von gesammelten Daten der Energiestatistik sind detaillierte Auswertungen der Energiemeldungen möglich (detaillierte Tabelle siehe Anhang).

Abbildung 8 dokumentiert die zeitliche Veränderung der eingesetzten Energieträger im Bereich der Heizenergie. Bei annähernd gleichbleibendem Anteil von Fernwärme und geringerem Rückgang von Erdgas an der Gesamtmenge ist der Verbrauch von Heizöl als Brennstoff stark zurückgegangen. Der Stellenwert von Heizöl als Brennstoff hat deutlich an Bedeutung verloren, entsprechend der Umsetzung des EEffG (2014).

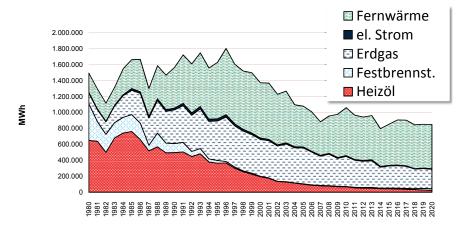


Abbildung 8: Anteilsmäßige Entwicklung der Energieträger 1980 - 2020 Quelle: eGISY des BMDW

Besondere Ausprägungen im Zeitraum 1980 – 2020:

Anstieg der

- Erdgasversorgung von 11 % auf ca. 29 %
- Fernwärmeversorgung von 18 % auf ca. 65 %

Rückgang der

- Festbrennstoffversorgung von 15 % auf 2,5 % (inkl. Pellets und Holzhackgut)
- Heizölversorgung von 53 % auf 2,8 %

Die Abbildung 9 und Abbildung 10 stellen die Energieträgerverteilung bzw. die Bundesländer-Anteile an Heizenergie dar.

Besonders in Wien dominiert der Anteil der Versorgung durch Fernwärme, gefolgt von Erdgas. In Relation zum Anteil Wiens an der gesamten Kubatur überträgt sich somit die Dominanz der Fernwärme auf die gesamte Energieträger-Aufteilung

(Siehe Vergleich der Energiekosten pro Bundesland, Kapitel 2, Abbildung 7).

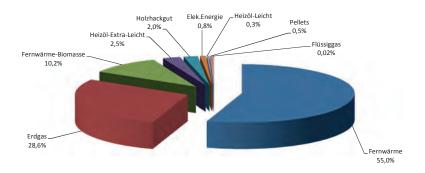


Abbildung 9: Verteilung der Energieträger [%]

Nachstehende Abbildung 10 zeigt die prozentuellen Anteile der Bundesländer an der gesamten Heizenergiemenge. Da sich in Wien 28,6 % der Bundesgebäude befinden, hält auch hier die Bundeshauptstadt den größten Anteil.

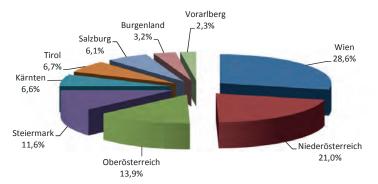


Abbildung 10: Bundesländeranteil an Heizenergie [%]

Die langjährige Energiestatistik der Energieberater des Bundes zeigt im Bundesbereich einen deutlichen Trend in der Verwendung der Energieträger (siehe auch Abbildung 8), auf welche folgend näher eingegangen wird.

Fernwärme

Der Anteil an Fernwärme als Primärenergieträger von Bundesgebäuden ist ein wichtiger Indikator in Bezug auf Energieeffizienz und Umweltschutz. Bundesweit werden gemäß nachfolgender Tabelle 4 circa 65 % der Bundesgebäude mit Fernwärme beheizt.

Die Anlagengröße von Fernwärmeheizwerken ermöglicht eine höhere Effizienz in der Nutzung von Brennstoffen bei gleichzeitig wirkungsvollerer Filterung der Abgase und damit einer Verringerung schädlicher Emissionen.

Bundesland	Anzahl Liegenschaften	gemeldeter Verbrauch in MWh	Rauminhalt in Mio. m³	FW-Anteil am Heizenergie- verbrauch in %
Wien	294	222.839	15.536.726	91,7
Steiermark	163	86.066	5.910.363	87,7
NÖ	206	74.587	4.604.150	41,8
OÖ	170	46.806	3.648.720	39,7
Salzburg	87	43.131	3.218.088	82,7
Kärnten	124	45.836	2.956.363	81,3
Tirol	56	19.401	1.563.242	34,1
Burgenland	22	9.198	617.192	33,7
Vorarlberg	38	6.954	567.911	35,8
SUMME	1160	554 817	38 622 755	65.3

Tabelle 4: Fernwärmeanteil 2020 bezogen auf Liegenschaften

Nachstehende Abbildung 11 zeigt den Wärmeenergieverbrauch von Fernwärme in den Bundesländern. Das Bundesland Wien hält dabei den größten Anteil aufgrund der in der Bundeshauptstadt dominanten Versorgung durch Fernwärme.

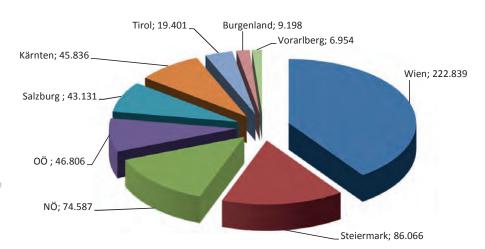


Abbildung 11: Fernwärme in den Bundesländern 2020 [MWh]

Entwicklung der Energiekennzahl Heizung

Die Energiekennzahl-Heizung ist ein Indikator für den Energieverbrauch eines Gebäudes pro konditioniertem Bruttorauminhalt. Sie wird in Abbildung 12 der Heizgradtagzahl gegenübergestellt. Diese ist eine regional abhängige, dimensionslose Größe. Der Rückgang der Heizgradtage korreliert mit einer kontinuierlichen Erhöhung des Temperatur-Jahresmittels in Österreich. Die Entwicklung der Energiekennzahl-Heizung (EKZ-H) dokumentiert die Erfolge der EBB besonders deutlich. Im Zuge ihrer langjährigen Tätigkeit konnten durch die gut funktionierende, enge Zusammenarbeit mit den Ressorts und deren nachgeordneten Organisationen wie auch mit den Gebäudeeigentümern verschiedene energiesparende Maßnahmen, wie z.B.:

- Hochbautechnische Sanierungen
- Sanierungen bzw. Erneuerungen von Energiebereitstellungen (Wärme Erzeugungsanlagen)
- Erneuerungen von Energieverteilungen und Heizungsregelungen
- Optimierung von Betriebsführungen
- Umstellung auf andere Heizenergieträger
- Effizienzsteigerung
- Energieeinsparcontracting

umgesetzt werden, welche die Energiekennzahlen (siehe auch Abbildung 12) deutlich gesenkt haben.

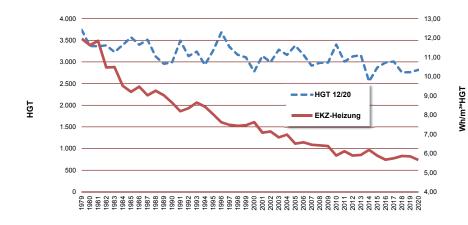


Abbildung 12: Heizenergiekennzahlen vs. Heizgradtagzahl 1979 – 2020

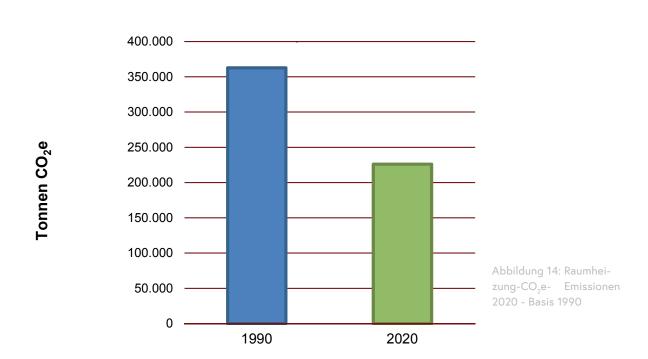
1979 hatten die Bundesgebäude eine durchschnittliche EKZ-H von 11,95 Wh/m³*HGT. 2020 lag der Wert bei 5,66 Wh/m³*HGT, das entspricht einer Reduktion von ca. 53 %!

4.2 Strom

Die Erfassung des elektrischen Stromes erfolgt erst seit dem Jahre 1996, wobei gesicherte Daten mit Verbrauch und Kosten erst ab 2000 aufliegen, siehe dazu auch nachstehende Abbildung 13. Die Stromverbrauchskennzahl (EKZ-S) ist zwischen 1996 und 2003 mit einem Wert von ca. **8,30 kWh/m³ pro Jahr** annähernd gleichbleibend. Die Reduktion im Jahre 2004 bzw. 2005 auf einen Wert von ca. **7,0 kWh/m³ pro Jahr** ist auf die Nichterfassung der Universitäten (Ausgliederung) zurückzuführen, die einen wesentlich höheren spezifischen Stromverbrauch gegenüber den restlichen Bundesgebäuden aufweisen.

Abbildung 13: Entwicklung der Energiekennzahl Strom 1996 - 2020

Die Verbrauchsentwicklung der elektrischen Energie ist ab dem Jahr 2010 tendenziell fallend, was auf verschiedene energiesparende Maßnahmen (z.B. Energie-Einsparcontracting, vermehrter Einsatz von energiesparenden Geräten, LED-Beleuchtung, hocheffizienter Umwälzpumpen in der Haustechnik) sowie der immer größer werdenden Anzahl von installierten Photovoltaikanlagen zurückzuführen ist. Dem gegenüber steht ein zunehmender Strombedarf aufgrund der steigenden Rechnerleistung durch fortschreitende Digitalisierung bzw. für Klimatisierung, welche auch in Zukunft eine Herausforderung darstellen wird. Auch das Internet of Things steigert den Bandbreiten- und damit den Rechnerleistungsbedarf - zentraler Steuerungs- und Kommunikationssysteme.


5 Emissionen im Bundesbereich

Die Berechnungen der CO₂e-Emissionen erfolgt ab 2015 auf Basis der "Konversionsfaktoren" gem. OIB-RL6. Vor 2015 wurde mit den Emissionsfaktoren der Energieträger gerechnet, weshalb es in den Darstellungen zu einer sprunghaften Veränderung kommt. Die im Energiebericht der EBB dargestellten Werte erheben keinen Anspruch auf absolute Gültigkeit der Schadstoffmengen. Vielmehr sollen sie den Trend der Emissionen aufzeigen.

Die folgende Abbildung zeigt die $\rm CO_2$ e-Emissionen von 1990 (Kyoto) im Vergleich mit den Werten, die 2020 ermittelt wurden.

2020 betrugen die CO₂e-Emissionen ca. 226.162 Tonnen.

Absolut gesehen konnten die Emissionen um **ca. 38** % (s.a. Abbildung 14) vermindert werden.

Etwa im gleichen Maße wie die Energiekennzahl im Bereich der Raumheizung gesenkt wurde, verringerten sich auch die CO₂e-Emissionen bei von Bundesdienststellen genutzten Gebäuden. Die folgenden Grafiken (Abbildung 15 und Abbildung 16) geben Aufschluss über die kubaturbereinigten CO₂e-Emissionen, welche für 2020 einen Wert von 4,2 kg/m³a aufweisen.

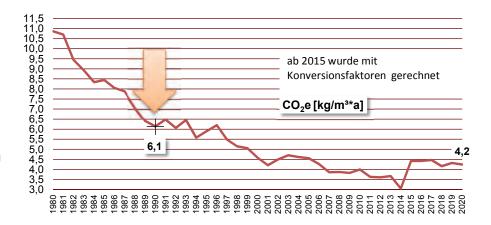


Abbildung 15: Entwicklung der kubaturbereinigten CO₂e-Emissionen 1980 -2020

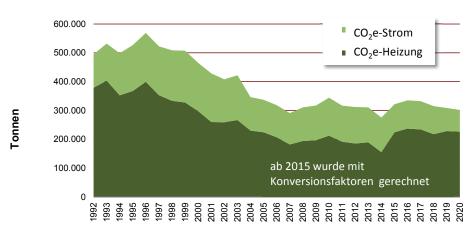


Abbildung 16: Entwicklung der CO₂e- Emissionen 1992 - 2020

Quelle: eGISY des BMDW

6 Werkzeuge der Energie-Effizienzsteigerung und der Emissionsreduktion

6.1 Energie-Einsparcontracting des Bundes

Energie-Einsparcontracting ist ein effizientes Medium zur Energieverbrauchsreduktion. Contractingpartner sind in der Regel qualifizierte Organisationen
aus der Privatwirtschaft, die das Erkennen und Realisieren des Energieeffizienzpotenzials von Gebäuden ermöglichen und die gesetzten Maßnahmen anteilig
über die eingesparten Energiekosten refinanzieren. Contracting-Gegenstand
können sowohl große einzelne Immobilienkomplexe als auch Pools in Form von
mehreren Immobilien der gleichen Verwendung (zum Beispiel Bundesschulen)
sein. Die Vertragsdauer beträgt beim Bund zehn Jahre.

Seit rund 20 Jahren sind die EBB entscheidend im Bereich der Aussschreibung, der Vergabe, dem Monitoring und in der Abrechnungskontrolle von Energie-Einsparcontracting tätig.

Energieeinsparcontracting-Modelle haben in den letzten rund zwanzig Jahren zu einer Steigerung der Energieeffizienz, zur Reduktion von Heiz- und Stromkosten sowie zur Minderung von Schadstoff-Emissionen geführt.

6.2 Photovoltaik

Photovoltaikanlagen bieten die Möglichkeit, unmittelbar aus der natürlichen Ressource Sonnenlicht Strom zu gewinnen, der direkt vor Ort genutzt aber auch in ein Stromnetz eingespeist werden kann. Relevant für die Nutzung von Photovoltaik ist eine entsprechend große Aufstellungsfläche für die Module sowie ausreichende Sonneneinstrahlung.

Die Nutzung von Photovoltaikstrom bringt auch eine entsprechende CO₂e-Emissionsreduktion mit sich.

In Abbildung 17 wird die Ressortaufteilung mit dem für 2020 von den Bundesdienststellen gemeldeten Photovoltaik - Stromertrag in der Gesamthöhe von 2,39 GWh dargestellt.

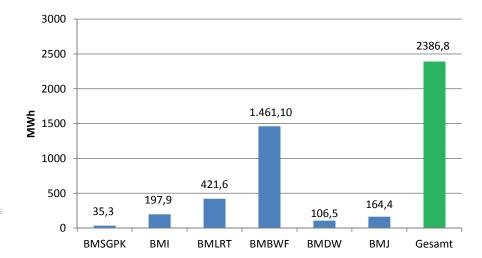


Abbildung 17: Ressortaufteilung mit Stromertrag aus Bundes-Photovoltaikanlagen 2020 [MWh]

Wie Abbildung 18 zeigt, konnte mit dem 2020 aus Photovoltaikanlagen generierten Strom die Schadstoffemission um insgesamt 542 t CO₂e reduziert werden.

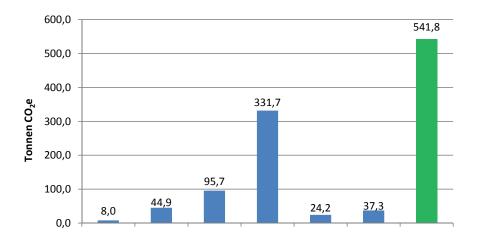


Abbildung 18: eingesparte CO₂e– Emissionen aus Photovoltaikstrom im Bundesbereich 2019 [t]

6.3 Weitere erneuerbare Energieträger

Die vorrangige Form der erneuerbaren Energieträger in allen Bundesländern ist die Fernwärme aus Biomasse-Heizwerken bzw. Blockheizkraftwerken. Bei nicht vorhandenem bzw. nicht möglichem Anschluss an ein Fernwärme-Versorgungsnetz stellen dezentrale Pellets- bzw. Holzhackschnitzelkessel eine Alternative dar. Eine entsprechende Aufstellung dieser Energieträger ist in nachfolgender Tabelle 5 dargestellt.

Bundesland	FWB	FW	PEL	PEL	НН	НН	Summe EE	Summe Hzg
	MWh	MWh	t	MWh	t	MWh	MWh	%
Burgenland	5.194	4.005	0	0	664	2.065	11.263	1,96
Kärnten	10.174	35.662	0	0	850	2.644	48.479	8,42
NÖ	33.365	41.222	270	1.299	636	1.976	77.862	13,52
OÖ	8.292	38.514	78	375	858	2.668	49.849	8,66
Salzburg	2.726	40.405	96	461	0	0	43.592	7,57
Steiermark	18.353	67.712	162	779	449	1.395	88.240	15,32
Tirol	4.575	14.826	0	0	1.878	5.839	25.240	4,38
Vorarlberg	4.031	2.924	131	630	0	0	7.584	1,32
Wien	0	222.381	191	918	130	404	223.703	38,85
Gesamt	86.710	467.650	928	4.461	5.463	16.991	575.812	100,00
MWh	86.710	467.650	4.461	4.461	16.991	16.991	575.812	849.814
%	15,1	81,2	0,8	0,8	3,0	3,0	67,8	100,0

Tabelle 5: Gemeldeter Energieverbrauch 2020 -Erneuerbare Energieträger (HZG)

Einen nicht zu unterschätzenden Kostenvorteil beim Energieträger Fernwärme stellen die niedrigeren Betriebs- und Wartungskosten dar. Nachfolgende Abbildung 19 zeigt die Anteile von erneuerbaren Energieträgern pro Bundesland in absoluten Verbrauchswerten [MWh].

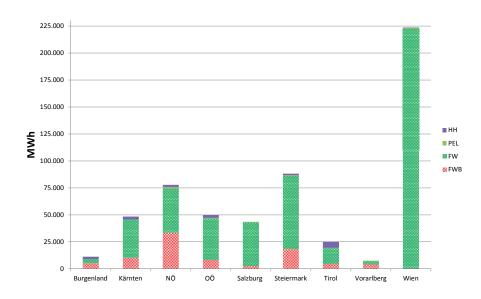


Abbildung 19: Gemeldeter Energieverbrauch 2020 -Erneuerbare Energieträger (HZG) Bundesländerübersicht in MWh

Abbildung 20 zeigt die prozentuellen Anteile von erneuerbaren Energieträgern pro Bundesland in Relation zum Gesamtverbrauch des jeweiligen Bundeslandes.

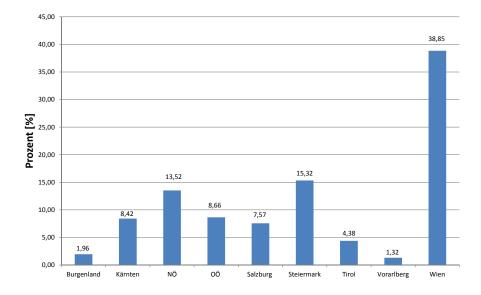


Abbildung 20: Gemeldeter Energieverbrauch 2020 erneuerbare Energieträger (HZG) Bundesländerübersicht in Prozent

7 Zukünftige Entwicklung -Bedarfsabschätzung etc.

Die Basis der Tätigkeit der EBB bildet das Energieeffizienzgesetz EEffG 2014. Aufgrund der Verpflichtung zur Umsetzung der Energieeffizienz-Richtlinie 2012/27/EU in der Fassung der Richtlinie 2018/2002/EU ergibt sich die Notwendigkeit der Erarbeitung eines EEffG-Neu.

Dieses wird die neuen Klimaziele der EU berücksichtigen und die Generierung einer gesteigerten Energieverbrauchseinsparung fordern und fördern.

Bis Inkrafttreten des neuen Gesetzes bleiben Teile des bisherigen Energieeffizienzgesetz 2014 (EEffG) in der Fassung BGBl. I Nr. 68/2020 in Geltung. Einige Verpflichtungen laut Energieeffizienzgesetz 2014 endeten jedoch mit 31. Dezember 2020 (Status bei Redaktionsschluss).

Aktuell wird evaluiert, inwiefern das Ziel der Klimaneutralität bis 2040 durch die derzeitigen Maßnahmen erreicht werden kann oder ob ein höheres Ambitionsniveau im Bereich Energieeffizienz zu etablieren ist, um die Ziele des European Green Deal bzw. nationale Vorgaben erreichen zu können. (Quelle: https://www.bmk.gv.at/themen/energie/publikationen/eed-fortschrittsbericht/eed-fortschrittsbericht2020.html).

Der per Oktober 2021 bekannt gegebene Entwurf der Steuerreform beinhaltet u. a. eine neue Steuer auf fossile Kraft- und Brennstoffe. Ab 1. Juli 2022 wird die von Heizöl, Erdgas, Diesel, Benzin etc. generierte und emittierte Tonne ${\rm CO}_2$ mit einem noch festzulegenden Preis besteuert, der in den Folgejahren weiter ansteigen wird. Davon erwartet man sich eine Steuerung bezüglich der Primärenergiequelle von konventionellen Brennstoffen hin zu emissionsfreien und erneuerbaren Energieträgern.

In den Vorlagen zur neuen Energieeffizienzrichtlinie EED III liegt der Schwerpunkt zur Senkung des Energieverbrauches in der Gebäudesanierung.

Zunehmender Kühlbedarf

Der Energiebedarf für Raumkühlung wächst schneller als jede andere Energienutzungsart in Gebäuden und hat sich 1990 – 2016 bereits mehr als verdreifacht; derzeit sind weltweit rund 1,6 Milliarden Kühlgeräte in Betrieb, welche bis 2050 auf eine Stückzahl von ca. 5,6 Mrd. anwachsen. (Quelle: https://nachhaltigwirtschaften.at/de/iea/publikationen/the-future-of-cooling.php /IEA).

Besonders im städtischen Bereich mit seiner hohen Wärmespeicherfähigkeit wird die Aufbringung des Energiebedarfs für die Klimatisierung von Gebäuden vor allem in den Sommermonaten eine Herausforderung.

Da bautechnische Änderungen am Bestand kostenintensiv sind, wird hier vorrangig am Nutzerverhalten anzusetzen (Lüften, Homeoffice etc.) sein.

Aber nicht nur in Bereichen in denen sich Menschen aufhalten steigt der Kühlbedarf, sondern auch bei Rechenzentren, wobei hier die Zunahme an Rechenleistung durch eine Intensivierung der IT-Nutzung und einer Ausweitung der elektronischen Tools zu berücksichtigen ist.

Internet of Things

Die zunehmende Bedeutung des Internet of Things bringt einen Bedarf an Bandbreite mit sich, und damit auch entsprechende Rechnerleistung zentraler Steuerungs- und Koordinationssysteme.

Nutzerverhalten

Auch ein geändertes Nutzerverhalten durch Ausweitung der Homeoffice-Nutzung, das papierlose Büro und auch die zunehmende Digitalisierung zahlreicher Abläufe verändert den Energieverbrauch nachhaltig. Eine Umschichtung des Energiebedarfs von der Heizwärme hin zur elektrischen Energie ist weiterhin zu erwarten.

E-Mobilität

Immer mehr Bundesdienststellen verfügen über eine Lade- Infrastruktur, um elektrisch betriebene Fahrzeuge aufladen zu können. Diese werden oft auch im Zuge der Errichtung von Photovoltaikanlagen installiert.

Diese zukünftigen Entwicklungen werden in der Tätigkeit der EBB ihre Berücksichtigung finden und neue Möglichkeiten zur Energieeffizienzsteigerung bieten.

8 Arbeit und Erfolg der Energieberater des Bundes

Die EBB im Bundesamt für Eich- und Vermessungswesen (BEV) wurden nach den Ölkrisen Ende der 1970er Jahre als Organisationseinheit im Bund mit dem Ziel gegründet, den Verbrauch an thermischer und elektrischer Energie in Bundesgebäuden zu senken.

Das Tätigkeitsgebiet der EBB erstreckt sich von der Führung der Energiestatistik des Bundes über die klassische Energieberatung samt Messtätigkeiten (z.B. Bauthermografie) bis zum Monitoring von Energiecontracting-Projekten. In Ausübung ihrer Tätigkeit stehen die EBB in enger Zusammenarbeit mit den Energieexperten der Ressorts. Diese Kooperation ist wesentlich für das Erreichen der Energieeffizienzziele.

Die Aufgaben der EBB im Detail:

- Erfassung des Energieeinsatzes für Bundesgebäude
- Führung der Energiestatistik des Bundes
- Erstellung des jährlichen Energieberichtes des Bundes
- Beratung, Unterstützung und Schulung der Energieexperten der Ressorts
- Steigerung der Energieeffizienz von Bundesgebäuden
- Aufgaben im Bereich des Bundescontracting (Erstellung von Ausschreibungsunterlagen, Abrechnungskontrolle)
- Ausstellung von Energieausweisen für Bundesgebäude

Mittels BGBl. I Nr. 72/2014 vom 11. August 2014 wurde das Energieeffizienzpaket des Bundes kundgemacht. Ein Teil des Energieeffizienzpakets war das Bundes-Energieeffizienzgesetz. Mittels BGBl. I Nr. 68/2020 erfolgte eine Novellierung des Bundes-Energieeffizienzgesetzes.

9 Anhang

• Tabellen

| Nutrex | Nation | No. | No.

Tabelle 6: Gemeldeter Energieverbrauch 2020

Tabelle 7: Theoretische Änderung des Energieverbrauches 2020 bezogen auf 2019

BL			В	K	NÖ	OÖ	S	ST	T	V	W	Summe	MWh	%
ESZ	7	MWh	-552,0	-1.490,9	-5.111,5	-3.219,3	-1.335,5	-3.744,4	-1.025,1	-919,6	-7.368,6	-24766,9	-24.767	-7,5
EPV	/	MWh	11,1	100,6	1,4	-26,9	124,4	241,6	137,5	0,0	135,7	725,4	725	30,4
HEI	L	t	6,0	-10,3	-4,7	-8,8	-1,4	-1,0	-21,1	11,3	-27,3	-57,3	-683	-3,2
HL		t	0,0	25,9	0,0	1,9	-1,4	0,0	0,0	-1,4	0,0	25,0	289	11,0
FW	В	MWh	-204,2	-408,0	-1.245,6	-498,2	-95,6	-399,7	-254,2	-119,9	0,0	-3225,4	-3.225	-3,7
FW	/	MWh	-274,9	-902,1	-116,5	191,4	-1.520,4	-1.754,7	-400,8	-109,0	-11.873,4	-16.760,4	-16.760	-3,6
EL		MWh	34,2	35,6	79,7	-2,5	-66,4	-5,7	21,5	2,8	0,0	99,2	99	1,9
ELW	/P	MWh	-1,0	-1,5	-104,4	3,7	-98,0	0,0	30,6	-53,6	-1,7	-225,9	-226	-14,4
EG	i	1000m³	-99,9	-0,2	-94,7	-27,4	-48,7	16,8	-7,0	-23,5	-109,3	-393,9	-3.963	-1,6
FLO	ŝ	t	-0,1	0,0	-1,0	2,1	0,0	0,0	0,3	0,0	0,0	1,3	17	8,7
PEI	L	t	0,0	0,0	-63,1	0,5	-11,7	-2,9	0,0	-3,6	-13,6	-94,4	-454	-10,2
HH		t	-22,9	-313,8	-20,3	-202,3	0,0	-13,8	934,4	0,0	-5,8	355,5	1.106	6,5
Heizung	MWh	(+/-)	-1.452	-2.077	-2.775	-1.264	-2.359	-2.060	1.985	-415	-13.384	-23.801	-23.801	-3
Strom*)	MWh	(+/-)	-541	-1.390	-5.110	-3.246	-1.211	-3.503	-888	-920	-7.233	-24.042		
Energie	MWh	(+/-)	-1.993	-3.467	-7.885	-4.510	-3.570	-5.563	1.097	-1.335	-20.617	-47.843		
Einsparung(-)	Mehrkost en(+)	Euro	-172.662	-378.661	-990.721	-547.816	-480.723	-752.990	-145.604	-164.992	-2.261.446	-5.895.615		
Rauminhalt	Diff.z.VJ	in m ⁸	-38.382	-57.529	56.507	825	-9.302	18.892	57.016	-2.460	-52.649	-27.082		

Tabelle 8: Ressortübersicht 2020

Ressort	Anzahl		Hei	zung		elektris	scher Strom	Ges.Kosten	Ges. EKZ		
		Rauminh. m³	MWh	EURO	EKZ Wh/m³	Rauminh. m³	MWh	EURO	EKZ Wh/m³	EURO	Wh/m³
BKA	30	2.293.639	23.453	2.187.031	10.225	1.031.839	9.943	1.348.154	9.636	3.535.185	19.861
BMLV	172	11.955.868	258.413	17.862.107	21.614	11.874.403	88.572	11.919.973	7.459	29.782.080	29.073
BMBWF	613	23.675.728	264.145	21.458.828	11.157	23.449.012	95.224	13.996.095	4.061	35.454.923	15.218
BMDW	63	640.185	8.260	714.758	12.903	563.503	4.977	668.810	8.832	1.383.568	21.735
OBORG	12	430.118	5.675	559.026	13.194	440.792	7.904	1.043.620	17.931	1.602.646	31.125
BMF	102	1.850.259	27.026	2.217.379	14.607	1.592.290	13.641	1.859.966	8.567	4.077.345	23.174
BMI	752	4.780.829	102.436	8.465.412	21.426	4.744.448	50.839	7.007.361	10.715	15.472.773	32.142
BMKÖS	3	88.315	2.070	131.477	23.439	88.315	388	55.807	4.393	187.284	27.832
BMK	3	206.595	3.482	335.075	16.854	284.219	5.120	662.621	18.014	997.696	34.869
BMEIA	2	132.415	1.717	165.109	12.967	81.520	1.539	228.589	18.879	393.698	31.846
BMLRT	75	1.915.582	29.466	2.633.151	15.382	1.506.485	10.359	1.386.848	6.876	4.019.999	22.259
BMAFJ	12	64.363	1.532	119.676	23.802	64.065	342	54.381	5.338	174.057	29.141
BMSGPK	1	105.289	1.085	104.334	10.305	105.289	568	69.304	5.395	173.638	15.700
BMJ	173	5.162.772	121.054	8.596.461	23.447	5.121.519	45.030	6.272.089	8.792	14.868.550	32.240
0	1.840	53.301.957	849.814	65.549.824	15.943	50.947.699	334.446	46.573.618	6.564	112.123.442	22.508

Jahr	Burgenland	Kärnten	NÖ	OÖ	Salzburg	Steiermark	Tirol	Vorarlberg	Wien		Gesamt		CO ₂	CO ₂
	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	m³	kWh/m³	in t	kg/m³
1996	9.196	20.797	54.357	43.672	31.461	52.932	39.077	7.363	231.745	490.600	58.055.506	8,45	169.793	2,9
1997	8.669	20.755	51.621	43.366	29.289	63.368	38.460	7.709	227.553	490.790	58.251.313	8,43	169.859	2,9
1998	8.920	20.428	52.753	43.496	30.101	63.681	40.105	7.792	239.323	506.599	59.563.149	8,51	175.330	2,9
1999	10.486	21.119	54.689	46.578	34.409	68.969	41.504	8.347	233.758	519.859	60.096.357	8,65	179.920	3,0
2000	10.695	22.081	55.700	45.998	32.331	55.002	41.900	7.186	212.342	483.235	59.588.384	8,11	167.244	2,8
2001	11.184	22.130	57.378	47.455	32.427	52.582	41.928	7.146	215.001	487.231	56.638.537	8,60	168.627	3,0
2002	10.972	22.649	55.098	34.636	22.184	46.478	32.745	6.808	198.245	429.815	52.938.529	8,12	148.756	2,8
2003	11.497	23.747	60.076	39.116	32.525	31.092	39.348	9.162	203.455	450.018	54.975.719	8,19	155.748	2,8
2004	11.387	21.796	60.420	40.407	23.638	30.359	18.252	8.699	120.926	335.884	47.627.124	7,05	116.247	2,4
2005	11.025	20.401	59.774	38.421	23.649	35.478	15.991	6.531	114.171	325.441	47.635.645	6,83	112.633	2,4
2006	10.986	20.600	56.977	35.806	24.027	38.312	14.642	7.014	114.338	322.702	46.638.635	6,92	111.685	2,4
2007	8.836	20.781	54.665	34.298	22.378	39.304	21.393	8.871	105.046	315.572	45.267.919	6,97	109.217	2,4
2008	10.199	21.582	59.503	36.916	23.546	42.541	21.970	8.963	111.922	337.141	46.381.771	7,27	116.682	2,5
2009	10.326	20.564	59.848	37.214	23.648	42.804	21.434	9.138	123.338	348.314	47.441.271	7,34	120.549	2,5
2010	10.617	20.833	60.319	41.594	24.098	46.386	25.101	10.342	142.441	381.731	49.989.583	7,64	132.114	2,6
2011	10.255	20.996	59.565	41.199	24.757	44.561	23.706	9.896	127.138	362.073	48.238.666	7,51	125.311	2,6
2012	10.046	20.050	59.793	40.386	24.138	44.208	24.422	9.566	132.801	365.410	49.269.306	7,42	126.466	2,6
2013	10.113	20.252	58.139	39.352	24.076	44.763	24.057	10.642	119.701	351.095	48.909.164	7,18	121.512	2,5
2014	9.358	19.809	56.897	36.502	22.243	45.424	24.420	9.816	121.976	346.445	48.548.303	7,14	119.902	2,5
2015	11.113	18.416	60.836	37.481	22.268	43.696	25.670	9.552	123.329	352.361	48.222.011	7,31	97.252	2,0
2016	11.471	19.041	60.837	38.091	22.080	44.588	24.998	10.350	124.888	356.344	49.099.150	7,26	98.351	2,0
2017	12.273	18.832	60.834	37.148	22.144	43.564	24.847	10.471	124.830	354.943	49.774.323	7,13	97.964	2,0
2018	11.954	19.571	61.647	35.928	21.576	43.896	24.407	9.880	122.393	351.252	49.718.907	7,06	96.946	1,9
2019	12.360	19.702	62.059	35.904	21.806	48.847	24.265	10.049	117.766	352.758	52.791.213	6,68	80.076	1,5
2020	11.642	18.151	57.302	33.017	19.534	39.871	23.277	9.346	119.920	332.059	53.301.957	6,23	75.377	1,4

Tabelle 9: Daten zum Stromverbrauch 1996 -2020

Quelle: eGISY des BMDW

Begriffsbestimmungen

Heizgradtage 20/12 (HGT)

Summe aller Temperaturdifferenzen zwischen der Innentemperatur (20°C) und der mittleren Außentemperatur pro Tag. Die Zählung der Heizgradtage erfolgt nur unter der Heizgrenztemperatur (12°C).

Energiekennzahl Heizung (EKZ-H)

Diese Energiekennzahl ist der gebräuchlichste Vergleichswert um die thermische Qualität eines Gebäudes, der Heizungsanlage und des Nutzerverhaltens zu beschreiben. Die Angabe erfolgt entweder flächen- oder raumbezogen (kWh/m² bzw. kWh/m³). In speziellen Fällen fließt die Witterung als HGT in die Bewertung mit ein. Die Einheit ist je nach Bezug entweder Wh/m²*HGT oder Wh/m³*HGT.

Energiekennzahl Strom (EKZ-S)

Diese Energiekennzahl wird zur Bewertung des Gebäudes und des nutzungsbezogenen Stromverbrauches angewendet und entweder als KWh/m²a oder kWh/m³a angegeben.

Konversionsfaktor f_{CO2}

Der Konversionsfaktor gibt die ${\rm CO}_2$ Emissionen, die mit dem Konsum der Endenergie (wo auch immer) entstehen, entsprechend der OIB-Richtlinie 6 an.

Quellenangaben

- eGISY Datenbank BMDW / BEV
- Heizgradtagzahlen Zentralanstalt für Meteorologie und Geodynamik Wien
- Heizwerte (Hu) BGBL 2015, ausgegeben am 30.November 2015 Teil II 394. Verordnung: Energieeffizienz-Richtlinienverordnung
- Energiebericht der Bundesregierung 1996
- Institut für Energieforschung Joanneum Research "Erstellung von Energie- und Emissionsbilanzen im Bereich der Raumwärmeversorgung"
- Konversionsfaktoren: OIB Richtlinie 6 (Ausgabe April 2019)

Abkürzungen

BKA Bundeskanzleramt

BMA Bundesministerium für Arbeit

BMBWF Bundesministerium für Bildung, Wissenschaft und Forschung
BMEIA Bundesministerium für europäische und internationale Angele-

genheiten

BMDW Bundesministerium für Digitalisierung und Wirtschaftsstandort

BMF Bundesministerium für Finanzen
BMI Bundesministerium für Inneres
BMJ Bundesministerium für Justiz

BMKÖS Bundesministerium für Kunst, Kultur, öffentlicher Dienst und Sport BMK Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität,

Innovation und Technologie

BMLV Bundesministerium für Landesverteidigung

BMSGPK Bundesministerium für Soziales, Gesundheit, Pflege und Konsu-

men tenschutz EG Erdgas

EL Elektrische Energie für Heizzwecke
ESZ Elektrische Energie für sonst. Zwecke
EPV Elektrische Energie aus Photovoltaik
ELWP Elektrischer Strom für Wärmepumpe

FW Fernwärme

FWB Fernwärme aus Biomasse

FLG Flüssiggas

HEL Heizöl extra leicht

HL Heizöl leicht
HM Heizöl mittel
HH Holzhackgut

HOL Holz KOK Koks

OBORG Oberste Organe (Präsidentschaftskanzlei, Parlament, Verfassungs

gerichtshof, Verwaltungsgerichtshof, Rechnungshof)

PEL Pellets

Abbildungsverzeichnis

Abbildung 1: kumulierte Energiekosteneinsparungen 1980 - 2019
[Mio. Euro/Jahr]
Abbildung 2: Gebäudeanzahl je Bundesland
Abbildung 3: Verteilung der Gebäudekubatur auf die Bundesländer $[\%]$ 8
Abbildung 4: Gesamtenergieverbrauch nach Ressorts 2020 [%]8
Abbildung 5: Energiekennzahlen der Ressorts [kWh/m³]9
Abbildung 6: Gesamtenergiekosten pro Rauminhalt 2020 [EUR/m³]
Abbildung 7: Gesamtenergiekosten 2020 je Bundesland11
Abbildung 8: Anteilsmäßige Entwicklung der Energieträger 1980 - 2020 13
Abbildung 9: Verteilung der Energieträger [%]14
Abbildung 10: Bundesländeranteil an Heizenergie [%]15
Abbildung 11: Fernwärme in den Bundesländern 2020 [MWh]
Abbildung 12: Heizenergiekennzahlen vs. Heizgradtagzahl 1979 - 2020 17
Abbildung 13: Entwicklung der Energiekennzahl Strom 1996 - 2020
Abbildung 14: Raumheizung- $\mathrm{CO_2}$ e-Emissionen 2020 - Basis 199019
Abbildung 15: Entwicklung der kubaturbereinigten CO ₂ e- Emissionen
1980 - 2020
Abbildung 16: Entwicklung der CO ₂ e- Emissionen 1992 - 2020
Abbildung 17: Ressortaufteilung mit Stromertrag aus
Bundes-Photovoltaikanlagen 2020 [MWh]
Abbildung 18: eingesparte CO ₂ e – Emissionen aus Photovoltaikstrom im
Bundesbereich 2020 [t]
Abbildung 19: Gemeldeter Energieverbrauch 2020 - Erneuerbare Energieträger
(HZG) Bundesländerübersicht in MWh
Abbildung 20: Gemeldeter Energieverbrauch 2020 - Erneuerbare Energieträger
(HZG) Bundesländerübersicht in Prozent24

Tabellenverzeichnis

Tabelle 1: Allgemeine Daten der Bundesliegenschaften 2020	4
Tabelle 2: Energie- Verbrauchsänderung 2019 - 2020	12
Tabelle 3: Kumulierte Energieeinsparung 1980 - 2020	12
Tabelle 4: Fernwärmeanteil 2020 bezogen auf Liegenschaften	16
Tabelle 5: Gemeldeter Energieverbrauch 2020 -	
Erneuerbare Energieträger (HZG)	24
Tabelle 6: Gemeldeter Energieverbrauch 2020	28
Tabelle 7: Theoretische Änderung des Energieverbrauches 2020	
bezogen auf 2019	28
Tabelle 8: Ressortübersicht 2020	28
Tahelle 9: Daten zum Stromverhrauch 1996 - 2020	29

Impressum

Medieninhaber, Verleger und Herausgeber: BEV - Bundesamt für Eich- und Vermessungswesen Schiffamtsgasse 1-3, 1020 Wien Telefon: +43 1 21110-0 bev.gv.at info@bev.gv.at ©BEV2021

Geschäftszahl: 2021-0.868.628